Charm Physics from CLEOc

Sheldon Stone,
Syracuse University

"I charm you, by my once-commended beauty"

Julius Cæsar, Act II, Scene I

Why Study Charm? – Overview

- Tests of Theoretical Models necessary to interpret critical CKM data, usually obtained from B decays
- CKM Matrix elements: Charm decays can be used to determine directly V_{cd} & V_{cs} , indirectly V_{ub} and contribute to V_{cb}
- Engineering measurements: e. g. absolute \mathcal{B} 's (& some inclusive ones, i.e. $D^{o,+} \rightarrow \phi X$)
- New Physics: May see in charm directly
 - SM CPV suppressed, perhaps also rare decays & mixing

Use of Charm data to improve B measurements, etc..

Some examples:

Item: B_s mixing

- To relate constraints on CKM matrix in terms of say ρ & η need to use theoretical estimates of fe²Be/fe²Be/g
 - CLEO-c's job: Measure fos/fot to check theoretical lattice calculations, best unquenched lattice.

Artists view of current constraints $\pm 1\sigma$ bands, not precise

• Idea is that (η, ρ) can be determined in several ways, differences will indicate new physics

Leptonic Decays: $D \rightarrow \ell^+ \nu$

Introduction: Pseudoscalar decay constants: c and q can annihilate, probability is ∞ to wave function overlap

Example:

$$D^{+} \begin{cases} C & V_{cd} \\ & W^{+} \\ \hline d & V \end{cases}$$

In general for all pseudoscalars:

$$\Gamma(\mathbf{P}^{+} \to \ell^{+} \nu) = \frac{1}{8\pi} G_{F}^{2} f_{P}^{2} m_{\ell}^{2} M_{P} \left(1 - \frac{m_{\ell}^{2}}{M_{P}^{2}} \right)^{2} |V_{Qq}|^{2}$$

Calculate, or measure if V_{Oa} is known

Experimental methods

- ■DD production at threshold: used by Mark III, and more recently by CLEO-c and BES-II.
 - Unique event properties
 - ➤Only DD not DDx produced
 - Large cross sections:

$$\sigma(D^{\circ}\overline{D^{\circ}}) = 3.72\pm0.09 \text{ nb}$$
 $\sigma(D^{+}D^{-}) = 2.82\pm0.09 \text{ nb}$

- Ease of B measurements using "double tags"
- B_A = # of A/# of D's
- ■B-factories (e⁺e⁻) + fixed target & collider experiments at hadron machines
 - D displaced vertex
 - $\bullet D^{*+} \rightarrow \pi^+ D^0 \text{ tag}$

$D^+ \rightarrow K^- \pi^+ \pi^+$ at the ψ'' (CLEO-c)

Single tags

Double

$$M_D^2 = \sum E_i^2 - \sum \vec{P}_i^2 = E_{beam}^2 - \sum \vec{P}_i^2$$

57 pb⁻¹ of data at $\psi(3770)$, CLEO now has 281 pb⁻¹

Absolute B Methodology

- Idea: ratio of double to single tags determines B
 - $N_i = 2\varepsilon_i B_i N_{D\bar{D}}, N_{ii} = 2\varepsilon_{ii} B_i^2 N_{D\bar{D}}$
 - \blacksquare :. $N_{ii}/N_i = (B_i/2)(\epsilon_{ii}/\epsilon_i)$, with $\epsilon_{ii}/\epsilon_i \approx 1$
- Modes
 - **D**o: $K^{-}\pi^{+}$, $K^{-}\pi^{+}\pi^{0}$, $K^{-}\pi^{+}\pi^{+}\pi^{-}$,
 - **D**⁺: $K^-\pi^+\pi^+$, $K_S\pi^+$, $K^-\pi^+\pi^+\pi^0$, $K_S\pi^+\pi^+\pi^-$, $K_S\pi^+\pi^0$, $K^-K^+\pi^+$
- Determine the single tag yields in each mode
- Determine the double tag yields in all combined modes

Yields Determined Precisely

- Include Initial State Radiation in fitting function
- Double tag yields are easier, due to extremely small backgrounds

Absolute B Results

 $\mathcal{B}(D^+ \rightarrow K^- \pi^+ \pi^+)$

Three best measurements

B (%)	Error(%)	Source
9.3±0.6±0.8	10.8	CLEO II
9.1±1.3±0.4	14.9	MK III
9.52 ±0.25±0.27	3.9	CLEO-c

 $\mathcal{B}(D^o \rightarrow K^-\pi^+)$

Three best measurements

B (%)	Error(%)	Source
3.82±0.07±0.12	3.6	CLEO II
3.90±0.09±0.12	3.8	ALEPH
3.91±0.08 ±0.09		

CLEO-c (not in average)

Leptonics & Semileptonics at CLEO-c

 Ease of leptonic & semileptonic decays using double tags & MM² technique

$$\begin{aligned} \mathbf{MM}^2 &= (E_D - E_\ell - E_{hadrons})^2 - (\vec{p}_D - \vec{p}_\ell - \vec{p}_{hadrons})^2 \\ \text{We know } \mathbf{E}_{\mathsf{D}} &= \mathbf{E}_{\mathsf{beam}}, \ \vec{\mathsf{p}}_{\mathsf{D}} &= - \ \vec{\mathsf{p}}_{\mathsf{D}} \end{aligned}$$

- Search for peak near MM²=0
- Since resolution ~ $M_{\pi^0}^2$, reject extra particles with calorimeter & tracking
- Note that this method can be used to evaluate systematic errors on ε, simply by using double tags with one missing track
- Sometimes people use $U_{miss} = E_{miss} |\hat{P}_{miss}|$

Technique for $D^+ \rightarrow \mu^+ \nu$

- Fully reconstruct one D⁻
- Seek events with only one additional charged track, in detector barrel
 |cosθ|<0.81, & no additional photons > 250
 MeV to veto D⁺ → π⁺π^o
- Charged track must deposit only minimum ionization in calorimeter
- Constraint D⁻ decay products to have exact D mass; equivalent to full kinematic fit
- Compute MM^{2:} If close to zero then almost certainly we have a μ⁺ν decay

Single Tag Sample

MM² Resolution

- MC gives σ =0.0235±0.0004 GeV²
- Check with data use

 $D^o \rightarrow K_S \pi^+$ & ignore K_S

Events/0.01 GeV 2

200

100

 σ =0.0235±0.0004

A "Typical" Event

- Nothing left in event besides
 D_S tag and μ⁺
- Note the 50MeV curler

Measurement of f_D⁺

MC Expectations from 1.7 fb⁻¹, 6X this sample

Data have 50 signal events in 281 pb⁻¹

Backgrounds

- D⁺ $\rightarrow \pi^+\pi^0$, MM² peaks at 0.018 GeV² within 0.025 GeV² resolution (1 σ), *B* measured by CLEO
- Defeated by
 - ightharpoonup veto of 250 MeV, very effective for a ~0.9 GeV π°
 - Minimum ionization in EM cal < 300 MeV of deposited energy kills 40% of pions & is 98% efficient

$D^+ \rightarrow \tau^+ \nu$, $\tau^+ \rightarrow \pi^+ \nu$ Background

- Calorimeter requirement eliminates 40% of the pions
- Since B (D⁺ $\rightarrow \tau^+ \nu$)= 2.65•B(D⁺ $\rightarrow \mu^+ \nu$) easy to evaluate
- Some hope of measuring this process with more data, which would provide

data, which would provide a test of Lepton Universality

Other Backgrounds

- Tail of the K^oπ⁺
 - Evaluated using MC, yields 0.44±0.22 events
 - Evaluated using Double tags, one tag consistent having two tracks, one a K & the other a π by RICH id. Then we ignore the K. This gives 0.33±0.19±0.02 events
- Other D°, D⁺, Continuum & radiative return (γψ') events show no background using large MC samples

Deriving a Value for f_D+

Backgrounds			
Mode	<i>B</i> (%)	# Events	
$\pi^+\pi^0$	0.13±0.02	1.40±0.18±0.22	
$\mathrm{K}^0\pi^+$	2.77±0.18	0.33±0.19±0.02	
$\tau^+ V (\tau \rightarrow \pi^+ V)$	2.65* <i>Β</i> (D⁺→μ⁺ν)	1.08 ±0.15±0.02	
Other D+, Dº	0	<0.4, <0.4 @ 90% cl	
+ Continuum	0	<1.2 @ 90% c.l.	
Total		$2.81 \pm 0.30^{+0.84}_{-0.27}$	

- Tags are 158,354 events
- $\mathcal{B}(D^+ \to \mu^+ \nu) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \times 10^{-4}$
- $f_{D^+} = (222.6 \pm 16.7^{+2.3}_{-3.4}) \text{ MeV}$
- $\mathcal{B}(D^+ \to e^+ v) < 2.4 \times 10^{-5} @ 90\% \text{ c.l.}$

Efficiencies: μ^+ detection (69.4%); extra shower (96.1%); correction for easier tag reconstruction in $\mu^+\nu$ events (1.5%)

Systematic Errors

Source of Error	%
Finding the μ^+ track	0.7
Minimum ionization of μ^+ in EM cal	1.0
Particle identification of μ^+	1.0
MM ² width	1.0
Extra showers in event > 250 MeV	0.5
Number of single tag D ⁺	0.6
Monte Carlo statistics	0.4
Background	+ 0.6, -1.7
Total	+2.1, -2.5

Evaluation of Systematic Errors

- Systematic errors are small because data is used to evaluate most of the cut efficiencies
- Example: Extra showers in event > 250 MeV. Use Double tag event sample, then measure the product ε of two tags
 - Use K̄π⁺π⁺ as one tag, due to large clean sample
 - Use p and E conservation to do a full kinematic
 fit to both D⁻ & D⁺ decays in each event
 - Let the D mass float in the fit, M_X

Kinematic Fits to Define Double Tags

Prior to χ^2 cut, there is a small bkgrd

Mostbkgrdgonepostcut

Efficiency of 250 MeV Extra γ Cut

Mode 1	Mode 2	# of events	$\#(E_{\gamma>250~{ m MeV}})$	$\epsilon(\%)$ of Mode 1
$K^{+}\pi^{-}\pi^{-}$	$K^-\pi^+\pi^+$	861	82	95.2±0.5
$K^{+}\pi^{-}\pi^{-}\pi^{o}$	$K^{-}\pi^{+}\pi^{+}$	468	25	99.4 ± 1.2
$K_S\pi^-$	$K^{-}\pi^{+}\pi^{+}$	242	24	94.8 ± 2.0
$K_S\pi^-\pi^-\pi^+$	$K^{-}\pi^{+}\pi^{+}$	406	28	97.9 ± 1.4
$K_S\pi^-\pi^o$	$K^{-}\pi^{+}\pi^{+}$	524	42	96.7 ± 1.3
$K^+K^-\pi^-$	$K^{-}\pi^{+}\pi^{+}$	143	17	92.9±2.8
Weighted Av	vera.ge			96.3±0.4

- Error of 0.4% is statistical
- Systematic error arises from difference in this situation and a single tag, estimated by MC as 0.5% (i.e. difference between Kππ-Kππ & Kππ-μν)
- Overall, systematic errors are small now, can be lowered, and will not present a limit to improved measurement

Comparison to Theory

- BES measurement based on 2.67±1.74 events
- Current Lattice measurement (unquenched light flavors) is consistent
- But systematic errors on theory
 & statistical errors on data are still large

Inclusive Semileptonic Branching Fractions

Lab momentum spectrum – no FSR correction

- Tagged sample: only "golden modes" D⁰→K⁻π⁺ & D⁺→K⁻π⁺ π⁺
- Identify e, π, K right-sign and wrong-sign samples, use unfolding matrix→true e population.
- Correction for p_e- cut $B(D^{+} \to Xev) = (16.19\pm0.20\pm0.36)\%$ $\sum B(D^{+} \to Xev)_{excl} = (15.1\pm0.50\pm0.5)\%$ $B(D^{0} \to Xev) = (6.45\pm0.17\pm0.15)\%$ $\sum B(D^{0} \to Xev)_{excl} = (6.1\pm0.2\pm0.2)\%$

$$\frac{\Gamma(\mathbf{D}^+ \to Xe^+ v)}{\Gamma(\mathbf{D}^\circ \to Xe^+ v)} = 1.01 \pm 0.03 \pm 0.03$$

Exclusive Semileptonic Decays

- Best way to determine magnitudes of CKM elements, in principle, is to use semileptonic decays.
 Decay rate α|V_{QiQf}|²
- $\begin{array}{c|c} V_{QiQf} & & \ell^{-} \\ \hline Qi & & \overline{\psi} \\ \hline \overline{q} & & Qf \\ \hline \hline q & & Hadron \end{array}$
- This is how $V_{us}(\lambda)$ and $V_{cb}(A)$ have been determined
- ◆ Kinematics for hadron P: $q^2 = (p_D^{\mu} p_P^{\mu})^2 = m_D^2 + m_P^2 2E_P m_D$
- ♦ Matrix element in terms of form-factors (for D→Pseudoscalar $\ell^+ \nu$
- $\langle P(P_P) | J_{\mu} | D(P_D) \rangle = f_+(q^2)(P_D + P_P)_{\mu} + f_-(q^2)(P_D P_P)_{\mu}$
- ◆ For $\ell = e$, contribution of $f_{(q^2)} \rightarrow 0$

Cabibbo Favored Semileptonic Decays

$$U = E_{miss} - |P_{miss}| \text{ (GeV)}$$

$$\mathcal{B} = (5.70 \pm 0.28 \pm 0.25)\%$$

These are the dominant modes, so backgrounds are very small

Cabibbo Suppressed Semileptonic Decays

Summary of Semileptonic Branching Ratio Results

	Decay Mode	B (%) (CLEO-c/(57/pb))	B (%) (PDG-04)
1.	$D^0 ightarrow \pi^- e^+ u$	$0.26 \pm 0.03 \pm 0.01$	0.36 ± 0.06
2.	$D^0 o K^- e^+ u$	$3.44 \pm 0.10 \pm 0.10$	3.58 ± 0.18
3.	$D^0 o K^{*-}(K^-\pi^0)e^+ u$	$2.16 \pm 0.24 \pm 0.11$	2.15 ± 0.35
4.	$D^0 o K^{*-}(K^0_S \pi^-) e^+ u$	$2.25 \pm 0.21 \pm 0.11$	2.15 ± 0.35
5.	$D^0 ightarrow ho^- e^+ u$	$0.19 \pm 0.04 \pm 0.02$	
6.	$D^+ ightarrow \pi^0 e^+ u$	$0.44 \pm 0.06 \pm 0.03$	0.31 ± 0.15
7.	$D^+ ightarrow ar K^0 e^+ u$	$8.71 \pm 0.38 \pm 0.37$	6.7 ± 0.9
8.	$D^+ ightarrowar{K}^{*0}(K^-\pi^+)e^+ u$	$5.70 \pm 0.28 \pm 0.25$	5.5 ± 0.7
9.	$D^+ ightarrow ho^0 (\pi^+\pi^-) e^+ u$	$0.21 \pm 0.04 \pm 0.02$	0.25 ± 0.10
10.	$D^+ ightarrow \omega (\pi^+\pi^-\pi^0)e^+ u$	$0.17 \pm 0.06 \pm 0.01$	

- Using unquenched lattice (hep-ph/0408306) find
- $V_{cs} = 0.956 \pm 0.036 \pm 0.093 \pm 0.017$
- $V_{cd} = 0.213 \pm 0.008 \pm 0.020 \pm 0.008$

stat sys exp lat lat CLEC

$$V_{cs}$$
 (LEP) = 0.976±0.014
 V_{cd} (vN) = 0.224±0.012
Currently this checks
Lattice calculations

Combining Semileptonics & Leptonics

Semileptonic decay rate:

$$\frac{d\Gamma(D \to Pev)}{dq^2} = \frac{\left|V_{cq}\right|^2 P_P^3}{24\pi^3} \left|f_+(q^2)\right|^2$$

Note that the ratio below depends only on QCD:

$$\frac{1}{\Gamma(D^{+} \to \ell \nu)} \frac{d\Gamma(D^{+} \to \pi e \nu)}{dq^{2}} \alpha \frac{P_{\pi}^{3} |f_{+}(q^{2})|^{2}}{f_{D^{+}}^{2}}$$

Lattice comparison: f_D and semileptonic ff

We can use a quantity independent of V_{cd} to do a CKM independent lattice check:

$$R_{\ell sl} \equiv \sqrt{rac{\Gamma(D^+ o \mu
u)}{\Gamma(D^+ o \pi \ell
u)}} \propto rac{f_D}{f_+^{\pi}(0)}$$

• I obtain: $R_{\ell sl}^{th} = 0.22 \pm 0.02$

■ Theory and data consistent at ~30% C.L.

Lattice comparison – the shape of f₊(q²)

Modern parameterization of the form factors proposed by

Becirevic & Kaidalov (BK):

 $\frac{1}{1}(x) = f_{+}(0) \left| \frac{1}{(1 - q^{2} / m_{D^{*}}^{2})} \frac{1}{(1 - \alpha q^{2} / m_{D^{*}}^{2})} \frac{1}{$

Representing contributions beyond the lowest lying resonances (D*)

Form Factor shapes

$\alpha(D^o \rightarrow K \ell \nu)$			
Lattice (Fermilab-MILC hep-ph/0408306)	0.50±0.04(stat)		
FOCUS	$0.28 \pm 0.08 \pm 0.07$		
CLEO III	$0.36 \pm 0.10 ^{+0.03}_{-0.07}$		
Belle	0.40 ±0.12 ±0.19		
$\alpha(D^o \rightarrow \pi \ell \nu)$			
Lattice (Fermilab-MILC hep-ph/0408306)	0.44 ±0.04(stat)		
CLEO III	$0.37^{+0.20}_{-0.31}\pm0.15$		
Belle	0.03 ±0.27±0.13		

CLEOc results soon

Q² Distributions for 281 pb⁻¹

Comparison of Techniques

 Superior method allows for clean signals with small amounts of data

Expected Precision on α

Inclusive Charm $\rightarrow \eta, \eta', \phi$

$D^o \rightarrow \eta X$

Inclusive Charm Results

<u>Mode</u>	Our Measurement (%)	PDG (%)
$\mathcal{B}(D^0 \to \eta X) =$	$= 9.4 \pm 0.4 \pm 0.5$	< 13%
$\mathcal{B}(D^0 \to \eta' X) =$	$= 2.6 \pm 0.2 \pm 0.2$	
$\mathcal{B}(D^0 \to \phi X) =$	$= 0.99 \pm 0.08 \pm 0.05$	1.7 ± 0.8
$\mathcal{B}(D^+ \to \eta X) =$	$= 5.7 \pm 0.5 \pm 0.3$	< 13
	$= 1.0 \pm 0.2 \pm 0.1$	
$ \overline{\mathcal{B}(D^+ \to \phi X)} : $	$= 1.11 \pm 0.14 \pm 0.14$	< 1.8

A useful tool for finding B_S decays, expect large rates to ϕ & η' from D_S decays ~15% Note $B(B\to\phi X)=3.5\%$, contribution from $B(B\to D^\circ + D^+ X + \Lambda_C) \sim 100\%$, is ~1% & $B(B\to D_S X)=15\%$ (?), giving 1.0% + 2.3% = 3.3%

Next From CLEOc: The D_s⁺

- Some reasons why we want to study the D_S
- Very Preliminary Results from an Energy Scan

Theoretical Predictions for f_D

Models predict
 f_{DS}/f_D+~1.1-1.3,
 with unquenched
 lattice giving
 large ratio of 1.24,
 or 250 MeV

Model	f_{D^+} (MeV)	$f_{D_S^+}/f_{D^+}$
Lattice $(n_f = 2 + 1)$ [13]	$201 \pm 3 \pm 17$	$1.24 \pm 0.01 \pm 0.07$
QL (Taiwan) [14]		$1.13 \pm 0.03 \pm 0.05$
QL (UKQCD) [15]	$210 \pm 10^{+17}_{-16}$	$1.13 \pm 0.02^{+0.04}_{-0.02} 1.10 \pm 0.02$
QL [16]	$211 \pm 14^{+0}_{-12}$	1.10 ± 0.02
QCD Sum Rules [17]	203 ± 20	1.15 ± 0.04
QCD Sum Rules [18]	195 ± 20	
Quark Model [19]	243 ± 25	1.10
Potential Model [20]	238	1.01
Isospin Splittings [21]	262 ± 29	

New Physics where:

$$\frac{\Gamma(D_{(s)}^{+} \to \tau^{+} \nu)}{\Gamma(D_{(s)}^{+} \to \mu^{+} \nu)} \neq \frac{m_{\tau}^{2} \left(1 - m_{\tau}^{2} / M_{D_{S}}^{2}\right)^{2}}{m_{\mu}^{2} \left(1 - m_{\mu}^{2} / M_{D_{S}}^{2}\right)^{2}}$$

Study of Inclusive Semileptonic Decays

- Is the semileptonic width, $\Gamma_{s\ell} = B_{s\ell} \cdot \Gamma_{tot} = B_{s\ell} / \tau_D$, the same for D°, D+ & D_s?
- Problem of Weak Annihilation in V_{ub} meas.

(Bigi & Uraltsev, Voloshin, Ligeti, Wise and Leibovich)

Gluons break helicity suppression

$$O\left(16\pi^2 imesrac{\Lambda_{QCD}^3}{m_b^3} imes egin{array}{c} ext{factorization} \ ext{violation} \end{array}
ight) \sim 0.03 \left(rac{f_B}{0.2\,\mathrm{GeV}}
ight) \left(rac{B_2-B_1}{0.1}
ight)$$

- ~3% (?? guess!) contribution to rate at $q^2=m_b^2$
- an issue for all inclusive determinations
- relative size of effect gets worse the more severe the cut
- no reliable estimate of size

Inclusive Semileptonic Decays II

Voloshin predicts that this effect, if it exists, will cause a difference between the semileptonic widths of the D° & D_s mesons

$$\Gamma_{\rm sl}({\rm D^o}) - \Gamma_{\rm sl}({\rm D_s^+}) \approx 1.1 \left(\frac{f_{\rm D}}{0.22 {\rm GeV}}\right)^2 \left({\rm B_1 - B_2}\right) {\rm ps^{-1}} \approx .1 {\rm ps^{-1}}$$

- We have already measured $\Gamma_{s\ell}(D^o)=0.157\pm0.006~ps^{-1}$, so we will measure or limit B_1 - B_2
- One of the best places to look as the annihilation in D_S is Cabibbo favored
- (Voloshin hep-ph/0106040)

The Absolute Branching Ratio

- Current Status
 - CLEO & BaBar measurements of $B(D_S^+ \to \phi \pi^+)$ with poor accuracy of $(3.6\pm0.9)\%$ & $(4.8\pm0.6)\%$, respectively
- This number is an important engineering number for understanding many B decays especially for B_s, very important at hadron colliders

The Charm Region

$$R = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

The Charm Region

What is best energy to Study D_s?

Decay Modes & Search Strategy

• D^0 decays mode

$$\circ K^-\pi^+$$

$$\circ K^{-}\pi^{+}\pi^{0}$$

$$\circ K^{-}\pi^{+}\pi^{+}\pi^{-}$$

• D^+ decays mode

$$\circ K^-\pi^+\pi^+$$

$$\circ K^-\pi^+\pi^+\pi^0$$

$$\circ K_s \pi^+$$

$$\circ K_s \pi^+ \pi^0$$

$$\circ K_s \pi^+ \pi^- \pi^+$$

$$\circ$$
 $K^+K^-\pi^+$

• D_s decays modes

$$\circ \phi \pi^+, \phi \to K^+K^-$$

$$\circ K^{*0}K^+, K^{*0} \to K^-\pi^+$$

$$\circ \eta \pi^+, \eta \to \gamma \gamma$$

$$\circ \eta \rho^+, \eta \to \gamma \gamma, \rho^+ \to \pi^+ \pi^0$$

$$\circ \eta' \pi^+, \eta' \to \pi^+ \pi^- \eta$$

$$\circ \ \eta' \rho^+, \eta' \to \pi^+ \pi^- \eta, \rho^+ \to \pi^+ \pi^0$$

$$\circ \phi \rho^+, \phi \to K^+K^-, \rho^+ \to \pi^+\pi^0$$

$$\circ K_s K^+, K_s \to \pi^+ \pi^-$$

Take ~5 pb⁻¹ per E_{cm} point, analyze online for fast feedback; can stop early if no D_S signals. p(D_S) shows if D_SD_S, D_S*D_S, etc

Some D_S Modes at 4160 + 4180 MeV

- Total of 15.8 pb⁻¹, D_S energy ⇒ no $D_S^+D_S^-$
- ${}^{\bullet}\sigma(D_S^*D_S)$ nearly equal at both energies

CLEO-c Energy Scan Results

Relative D_S Yields

Maximum at 4170 MeV

Searches for New Physics in Charm Decays

D°-D° Mixing

Mixing could proceed via

- the presence of d-type quarks in the loop makes the SM expectations for D°- D° mixing small compared with systems involving u-type quarks in the box diagram because these loops include 1 dominant super-heavy quark (t): K° (50%), B° (20%) & B_s (50%)
- New physics in loops implies x
 ≡ΔM/Γ>> y ≡ΔΓ /2Γ; but long range effects complicate predictions

Most general fit

Do- Do mixing: the data

- The study of D^o wrong-sign $K\pi$ yields has been a key step in our experimental study of D^o D̄^o mixing.
- Caveats:
 - Complicated by interference between DCSD & mixing [strong phase $\delta \Rightarrow$ data constrain only x' & y']
 - Complicated by CP violation

<u> </u>		
Experiment	x' ² (95 % C.L.) (X10 ⁻³)	y'(95% C.L.) (X10 ⁻³)
Belle (2004)	0.81	-8.2 <y′<16< td=""></y′<16<>
BaBar (2003)	2.2	-56 <y′<39< td=""></y′<39<>
FOCUS (2001)	1.52	-124 <y′<-5< td=""></y′<-5<>
CLEO II.V (2000)	0.82	-58 <y′<10< td=""></y′<10<>

Do Do mixing: the data II

•D° semileptonic decays:

$$R_{ws} = \frac{1}{2}(x^2+y^2)$$
 [no strong phase δ]

Experiment	R _M (95% CL)	$\sqrt{x^2+y^2}$
BaBar 04	0.0046	0.1
Belle 05	0.0016	0.056

•Dalitz plot analysis of D⁰ \rightarrow K $_{s}^{0}\pi^{+}\pi^{-}$ (CLEO II.V) comparable sensitivity

$D^{\circ} \rightarrow K_s \pi^+ \pi^-$ Dalitz Analysis for γ

 CLEOc data can be used to find phase shifts that can be used for input in the γ angle determination from

 $B^{\pm} \rightarrow D^{o}K^{\pm}$ decays, when $D^{o} \rightarrow K_{s}\pi^{+}\pi^{-}$

Measure Dalitz plot opposite a CP eigenstate tag such as K⁺K⁻ or K_sφ.

Future

- Immediate: Take data on D_s
- **LEO** runs until April 2008. Most of the running is now planned to be on ψ'' & ψ(4170) for D_s , with some on ψ'
- Errors will depend on how much data CLEO-c gets on charm
- Beijing has started building a two-ring machine for this physics with much more projected luminosity

BEPCII/BESIII Project

Design

- Two ring machine
- 93 bunches each
- Luminosity

10³³ cm⁻² s⁻¹ @1.89GeV

 $6 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1} @ 1.55 \text{GeV}$

 $6 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ @ 2.1GeV

- New BES III detector
 Status & Schedule
- Most contracts signed
- Linac installed 2004
- Ring installed 2005
- BESIII in place 2006
- Commissioning

BEPCII/BESIII

beginning of 2007

The End